1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
//! The core module contains the core data structures and traits used by all other modules.

#[cfg(feature = "with-constraint")]
use constraints;

use serde::{Deserialize, Serialize};
use std::collections::{BTreeSet, HashMap};
use std::fmt::{Debug, Display, Formatter, Result};
use std::iter::{Extend, FromIterator};

/// A type must implement BindingsValue in order to be used as the value for some variable.
pub trait BindingsValue
    : Clone + Debug + Default + Deserialize + Display + Eq + PartialEq + PartialOrd + Serialize
    {
    /// Construct a BindingsValue variable using the specified string as it's name
    fn variable(_s: &String) -> Option<Self> {
        None
    }
    /// Extract the name of this BindingsValue variable (if it is a variable)
    fn to_variable(&self) -> Option<String> {
        None
    }
}

/// Bindings is used for storing variables and operating on variables and their bindings.
#[derive(Debug, Deserialize, Clone, Serialize)]
pub struct Bindings<T: BindingsValue> {
    #[serde(default)]
    data: HashMap<String, T>,
    #[serde(default)]
    equivalences: HashMap<String, BTreeSet<String>>,
}

impl<T: BindingsValue> PartialEq for Bindings<T> {
    fn eq(&self, other: &Bindings<T>) -> bool {
        self.data.eq(&other.data) && self.equivalences.eq(&other.equivalences)
    }
}
impl<T: BindingsValue> Eq for Bindings<T> {}

impl<T: BindingsValue> Default for Bindings<T> {
    fn default() -> Self {
        Bindings {
            data: HashMap::new(),
            equivalences: HashMap::new(),
        }
    }
}

impl<T: BindingsValue> Bindings<T> {
    pub fn new() -> Bindings<T> {
        Bindings::default()
    }

    pub fn len(&self) -> usize {
        self.data.len()
    }

    pub fn has_binding(&self, variable: &String) -> bool {
        self.data.contains_key(variable)
    }

    pub fn set_binding(&self, variable: &String, val: T) -> Bindings<T> {
        let mut bindings_copy = self.clone();

        bindings_copy.set_binding_mut(variable, val);

        bindings_copy
    }

    fn set_binding_mut(&mut self, variable: &String, val: T) {
        self.ensure_equivalence_exists_mut(variable);

        if let Some(variable2) = val.to_variable() {
            self.add_equivalence(variable, &variable2);
        } else {
            for equivalent_variable in self.equivalences.get(variable).unwrap().iter() {
                self.data.insert(equivalent_variable.clone(), val.clone());
            }
        }
    }

    fn add_equivalence(&mut self, variable: &String, variable2: &String) {
        self.ensure_equivalence_exists_mut(&variable2);
        self.merge_equivalences_mut(variable, &variable2);
    }

    fn ensure_equivalence_exists_mut(&mut self, variable: &String) {
        if !self.equivalences.contains_key(variable) {
            self.equivalences.insert(variable.clone(),
                                     vec![variable.clone()].into_iter().collect());
        }
    }

    fn merge_equivalences_mut(&mut self, variable: &String, variable2: &String) {
        let mut merge = self.equivalences.get(variable).cloned().unwrap();
        merge.extend(self.equivalences.get(variable2).cloned().unwrap());

        self.equivalences.insert(variable.clone(), merge.clone());
        self.equivalences.insert(variable2.clone(), merge);
    }

    pub fn get_binding(&self, variable: &String) -> Option<T> {
        match self.data.get(variable) {
            Some(val) => Some(val.clone()),
            None => None,
        }
    }

    pub fn update_bindings(&self, variable: &String, value: &T) -> Option<Self> {
        // If we are setting a variable to itself, then do nothing
        if Some(variable.clone()) == value.to_variable() {
            return Some(self.clone());
        }
        match self.get_binding(&variable) {
            Some(ref val) if val == value => Some(self.clone()),
            Some(_) => None,
            None => Some(self.set_binding(variable, value.clone())),
        }
    }

    pub fn merge(&self, other: &Self) -> Self {
        let mut bindings = self.clone();

        // Merge in equivalences
        for (ref key, ref equivalences) in other.equivalences.iter() {
            for equivalent_key in equivalences.iter() {
                bindings.ensure_equivalence_exists_mut(key);
                bindings.add_equivalence(key, equivalent_key);
            }
        }

        // Merge in values
        for (key, value) in other.data.iter() {
            bindings.set_binding_mut(&key, value.clone())
        }

        bindings
    }

    pub fn equivalences_string(&self) -> String {
        let equivalent_v: Vec<String> = self.equivalences.iter().map(|(key, value)| format!("{} => {:?}", key, value)).collect();
        equivalent_v.join(",")
    }
}

impl<T: BindingsValue> FromIterator<(String, T)> for Bindings<T> {
    fn from_iter<I: IntoIterator<Item = (String, T)>>(iter: I) -> Bindings<T> {
        let mut bindings: Bindings<T> = Bindings::new();
        for (key, value) in iter {
            bindings.set_binding_mut(&key, value);
        }
        bindings
    }
}

impl<T: BindingsValue> Extend<(String, T)> for Bindings<T> {
    fn extend<It>(&mut self, iter: It)
        where It: IntoIterator<Item = (String, T)>
    {
        for (key, value) in iter {
            self.set_binding_mut(&key, value);
        }
    }
}

impl<T: BindingsValue> Display for Bindings<T> {
    fn fmt(&self, f: &mut Formatter) -> Result {
        try!(write!(f, "("));
        let mut sorted_keys: Vec<String> = self.data.keys().cloned().collect();
        sorted_keys.sort();
        for key in sorted_keys.into_iter() {
            let ref val = self.data[&key];
            try!(write!(f, "{} => {}, ", key, val));
        }
        try!(write!(f, "Equivalences: {}", self.equivalences_string()));
        write!(f, ")")
    }
}

/// A type must implement the Unify trait for it to be unifiable -  this only requirement for a data structure
/// that the algorithms in this library operate on.
pub trait Unify<T: BindingsValue>
    : Clone + Debug + Display + Eq + Serialize + Deserialize + PartialEq {
    /// Check if this structure can be unified with another of the same type.
    fn unify(&self, &Self, &Bindings<T>) -> Option<Bindings<T>>;

    /// Given some bindings, construct a new instance with any variables replaced by their values
    fn apply_bindings(&self, &Bindings<T>) -> Option<Self>;

    /// Return all variables in this tructure
    fn variables(&self) -> Vec<String>;

    /// Rename any variables in this structure with another variable name
    fn rename_variables(&self, &HashMap<String, String>) -> Self;

    /// Return a 'nil' sentinel value unique to this type of structure
    fn nil() -> Self;
}

/// A type that implements Operation constructs new Unifys from existing Unifys that match it's input patterns.
pub trait Operation<T: BindingsValue, U: Unify<T>>
    : Clone + Debug + Display + Eq + PartialEq + Deserialize + Serialize {
    // NOTE: replace constraints with validate_bindings?
    #[cfg(feature = "with-constraint")]
    fn constraints<'a>(&'a self) -> Vec<&'a constraints::Constraint>;

    /// Creates a new instance of this Operation where all variables are unique
    fn snowflake(&self, String) -> Self;

    /// Return a vector of input patterns that must be unified with in order to apply this Operation.
    fn input_patterns(&self) -> Vec<U> {
        Vec::new()
    }

    /// Given some bindings, construct a set of output patterns
    fn apply_match(&self, _bindings: &Bindings<T>) -> Option<Vec<U>>;

    /// Given some bindings, construct a set of input patterns that would match
    fn r_apply_match(&self, _fact: &U) -> Option<(Vec<U>, Bindings<T>)>;
}

#[cfg(test)]
mod tests;